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Abstract

The paper defines concept of a complex contact bundle Ω → Q
where Ω is endowed with a holomorphic contact structure but Q is
smooth only. Some cases produce an “anisotropic” complex structure
onQ or some its points – where multiplication by i in the tangent space
is non-linear, albeit linear within 1-subspaces. There is an example
where Q is a Grassmanian in symplectic geometry. A generalization of
such bundles to Ω endowed with certain complex tangent subbundle
is applicable to Lorentzian geometry; namely, as a space where the
bundle of skies can be embedded.

Note. This text is not about to become a peer-reviewed publication and will
be superseded by newer papers in 2020. It is retained mainly to document
development of the theory.

1 Complex bundles

1.1 Opening definitions and problems

Definition 1. A complex bundle Ω → Q is a complex manifold Ω endowed
with such smooth mapping q : Ω→ Q onto certain real manifold1 Q that for
any z ∈ Ω:

1Not necessarily C∞. Specific smoothness conditions will be formulated on applica-
tions.
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• im(dq|z) = Tq(z)Q,

• ker(dq|z) is a complex subspace in Tq(z)Ω.

The latter is, in other words, a requirement for all preimages Ωq := q−1(q),
where q ∈ Q, to be complex submanifolds.

Remark. Note that Q needs not to have any (almost) complex structure at
all, because no requirement exists on dependence of the bundle on the base
(beside smoothness). Besides such obvious covering examples as CP1 '
S2 2:1−→ RP2, the example from the subsection 1.2 will demonstrate that a
projection onto Q having connected fibers may result in no complex structure.

Definition 2. A complex contact bundle Ω→ Q where dimC Ω = 2m+ 1 for
a natural m, is a complex bundle where Ω is endowed with a holomorphic
contact structure.

Remark. The most obvious example is the projective contangent bundle
PT ′Q, where Q is a complex manifold, with the standard contact form
Θ = pk dq

k. For it, any complex hypersurface in Q lifts to a Legendrian
submanifold2 in PT ′Q.

Is it possible to have all Ωq Legendrian but without a complex structure
on Q? Are there interesting contact examples where Ωq isn’t Legendrian for
some q ∈ Q?

We shall demonstrate that for m = 1 and dimQ = 4 the answer to the
latter question is positive, and geometry induced by the complex contact
bundle in some cases “looks like” an (almost) complex structure on Q.

Definition 3. A Legendrian point q ∈ Q of a complex contact bundle Ω→ Q
is a point where Ωq is a Legendrian submanifold in Ω. A complex Legendrian
bundle is a complex contact bundle with dimQ = 2m+ 2 where all points in
the receiving manifold Q are Legendrian.

1.2 The oriented 2d Grassmanian

Definition 4. The oriented Grassmanian G̃r2(Rn) is the manifold of oriented
homogeneous planes in Rn.

2Remind that a Legendrian submanifold Σ in a (2m+1)-dimensional manifold C having
a contact structure—either real or complex—is an m-dimensional submanifold tangent to
the contact structure, that is, TΣ ⊂ Tc C|Σ, where Tc denotes the contact structure – a
2m-dimensional subbundle in TC.
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Example. A complex bundle, the complex-forgetful plane map r : CPn−1 \
RPn−1 → G̃r2(Rn) is r(Pz) := 〈Re z, Im z〉R where the vector z belongs to Cn

but isn’t a complex multiple of any element of Rn, Pz denotes the projective
image of z, and 〈· · · 〉R is the real linear span. The orientation for the spanned
two-dimensional subspace follows the order of two vectors under 〈· · · 〉R.

Obviously, this element of the Grassmanian doesn’t change under multi-
plication of z by non-zero complex numbers.

Remark. Fibers of the bundle are complex discs. In terms of CPn−1 these are
halves of projective lines and their boundaries lie in the real space RPn−1.

Digression. For n = 4 it’s an exercise to show that the complex structure
on CPn−1 \ RPn−1 is compatible with the pseudo-Riemannian (conformal)
structure on the two-dimensional Grassmanian3 in the sense of

Ψ(r∗(i v)) = Ψ(r∗(v)) where v ∈ T (CP3 \ RP3).

Remind that “· · ·∗” denotes the pushforward by a differentiable map.

1.3 A contact bundle over the Grassmanian

Consider a skew bilinear (symplectic) form ω on R4, such as this defined by
the matrix (

0 I2

−I2 0

)
where I2 is the identity 2 × 2 matrix. It induces a contact structure on
both respective real and complex projective spaces, namely the real structure
ω(x, dx) = 0 where x ∈ R4 on RP3 and the complex holomorphic structure
ω(z, dz) = 0 where z ∈ C4 on CP3.

Remark. This contact structure is preserved under multiplication of ω by
non-zero numbers. It will have implications for the subsection 2.2.

Example. The complex-forgetful plane map r : CP3 \ RP3 → G̃r2(R4)
defines a complex contact bundle. Its Legendrian points are exactly isotropic
(totally null) planes of ω which form a hypersurface in G̃r2(R4).

3Assuming orientation on R4. This structure results from intersections of planes.
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1.4 Legendrian points

Theorem 1. For a complex contact bundle Ω → Q, dimQ = 2m + 2
and any Legendrian point q ∈ Q, the map Pτ |Ωq : Ωq → P(C ⊗ T ′qQ) is
a holomorphic immersion, where a complex-valued 1-form τ—representing
the contact structure on Ω as Tc Ω = ker τ—is a holomorphic section of
(ker dq)⊥ ⊂ T ′Ω over some neighborhood in Ω and “(· · · )⊥” means “complex-
linear functionals nullifying all the subspace”. Moreover, if m = 1, then
P(q∗ (Tc1,0 Ω|Ωq)) : Ωq → P(C⊗ TqQ) is also a holomorphic immersion.

Strictly speaking, a local form representing the contact structure should
be a local section of T ′Ω, but—because the fiber Ωq is Legendrian—we restrict
its values to the dual horizontal bundle (ker dq)⊥ ' C⊗ q∗(T ′Q). Here “q∗”
denotes the pullback by a differentiable map.

Proof. Both mappings are holomorphic by construction. The “Pτ immer-
sion” part follows from maximal non-integrability of τ . The “P(q∗ Tc) im-
mersion” part follows from the Pτ immersion and the fact that Re〈τ〉C is ex-
actly the two-dimensional space that nullifies all real contact vectors in Ω.

Remark. Note that dimC Ωq = m, the same dimension the projectivisation of
the space of (1, 0)-forms could have were Q an (almost) complex manifold.
The same for (1, 0)-(vector fields) for m = 1. Hence, a complex Legendrian
bundle can serve as an “anisotropic complex structure” for even-dimensional
real manifolds. If the real part of the Q-projection of λτ, λ ∈ C× in
some point of Ω is a “real covector multipliable by i”, then a neighborhood
in T ′Q will possess the same operation as well. The same for vectors from
TQ (dimQ = 4) resulting from projection of contact vectors in Ω. In the
subsection 1.6 we shall see an “anisotropic CR structure” suitable also for
odd-dimensional real manifolds.

1.5 Complex contact structure and vector fields

For any complex manifold M , its complex structure can be expressed in terms
of the T 1,0M subbundle in the complexified real tangent bundle C ⊗ TRM .
For a (2m+ 1)-dimensional complex contact manifold C, m ≥ 1, it’s possible
to define both complex and contact structures at once with the subbundle
Tc1,0 C of the rank 2m. Although such definition can be understood as a
special case of almost CR structure, it is manifestly not an [integrable] CR

4



(Cauchy–Riemann) structure because [Tc1,0 C,Tc1,0 C] = T 1,0C where [·, ·] is
the Lie bracket of vector fields a.k.a. commutator – that is, Tc1,0 C is not
involutive.

Remark. If ϑ is the tautological contact 1-form (not important whether com-
plex or real), acting from contact vector fields to the bundle “normal” to the
structure, then its external derivative dϑ can be defined as an antisymmet-
ric bilinear form of the same domain and range, and corresponds to the Lie
bracket via the identity

ϑ[U, V ] = (dϑ)(U, V ).

For the complex case contact vector fields are sections of Tc1,0 C and the
“normal bundle” is T 1,0C/Tc1,0 C.

For m = 1, reduction of complex contact structures to a special kind
of vector subbundles permits for a generalization to be introduced by the
following

Definition 5. A smooth manifold X of unspecified dimension endowed with
a smooth subbundle T 1,0

II X ⊂ C⊗TX of the rank 2 is a quasi complex (“QC”
for short) contact manifold if T 1,0

III X := [T 1,0
II X, T 1,0

II X] defines a subbundle
in C⊗ TX of the rank 3.

By the Lie bracket of tangent subbundles we understand the union of all
graphs of Lie brackets of smooth sections of the specified subbundles.

Remark. This definition covers diverse objects, from the true three-dimensional
contact structure to some type of non-integrable two-complex-dimensional
almost complex manifolds.

Remark. For X endowed with an arbitrary smooth two-dimensional T 1,0
II X ⊂

C ⊗ TX computing [T 1,0
II X, T 1,0

II X] may add no more than one complex di-
mension to the subbundle due to the multiplication by a scalar function
property of the Lie bracket and its skew symmetry. Hence, it’s reasonable
to consider the “almost contact” case for X, where in general points there is
a QC structure, but there are some degeneracies and, possibly, singularities
around which T 1,0

III X cannot be defined continuously.

Definition 6. A Legendrian complex curve Σ in a QC-contact manifold X is
such smooth two-dimensional submanifold that T 1,0

II X ∩ C⊗TΣ is a complex
line bundle (that is, a vector bundle of the rank 1) over Σ.
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Remark. For the m = 1 holomorphic contact case these submanifolds are
namely Legendrian complex curves in the usual sense.

Remark. The definition can be generalized to the “almost contact” case, of
a manifold X endowed with an arbitrary smooth two-dimensional T 1,0

II X ⊂
C⊗ TX.

1.6 QC-Legendrian bundles

Definition 7. A QC-Legendrian bundle q : X→ Q is such smooth mapping
from a QC-contact manifold X to a smooth manifold Q that dq is surjective
everywhere and for any q ∈ Q the “fiber” Xq := q−1(q) is a Legendrian
complex curve in X. An almost (complex Legendrian) bundle if the same
where X is endowed with a smooth T 1,0

II X of the rank 2 but isn’t necessarily
QC-contact.

Remark. Obviously, dimQ = dimR X − 2. We restricted definition in this
way because we defined QC-contact manifolds only for m = 1.

Remark. The Theorem 1 admits some generalization to the QC-Legendrian
case. Although there is no holomorphic immersion of Ωq in full generality,
and we can’t use the projective complexified cotangent bundle for technical
reasons, Ωq has indeed a smooth immersion to P(C⊗ TqQ).

2 Lorentzian manifolds

2.1 The bundle of skies

This subsection sets out the facts known about Lorentzian manifolds (or
space-times) along the lines of [2].

Definition 8. A Lorentzian space-time is a pseudo-Riemann four-dimensional
manifold X with the metric g of the signature (+−−−) and the time ori-
entation at each point x ∈ X (i.e. one of the two connected components of
the cone { v ∈ TxX | g(v) > 0 } is chosen as “chronological future”), in a
continuous fashion.

Unlike [2], X is not assumed to be C∞ smooth. Our standard smoothness
conditions will be C2 for X proper and also, the metric tensor g must be C1

and the Levi-Civita connection on TX uniquely integrable.
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Definition 9. The sky Sx is the base of the cone C+
x in TxX—itself the

boundary of the “chronological future” cone—and points on Sx will be de-
noted Pv, where v ∈ C+

x \ {0}. The disjoint union of all skies (of all points of
X) forms a smooth locally trivial bundle over X, denoted by SX, with the
projection map x : SX → X.

Definition 10. The geodesic flow FX is a distribution of 1-subspaces in
the tangent bundle T (SX) of the total space of the bundle SX, defined by
the equations dx ‖ v (the differential of x is collinear to v), ∇v = 0 (v is
constant under the Levi-Civita connection), where v ∈ C+

x \ {0} is a vector
representing given point of the sky.

Remark. Integrating the flow FX gives the “light” foliation of the total space
SX. Its leafs are light lines, or null geodesic curves on X lifted to SX
naturally, by the mapping P of tangent vectors to respective skies. The
paper[2] also defined notation for the property of elements of SX to lie on
the same light line, but we don’t need this notation here.

From [6], [7], and [4] we know that N, that is defined as the quotient space
of SX by the light foliation possesses a natural contact structure (when N is
smooth). But one doesn’t need N at all to define the respective distribution
of tangent hyperplanes.

Definition 11. The form ϑ := (v.dx), where v ∈ C+
x(w) \ {0} is a null vector

representing a point w ∈ SX and “.” denotes the Lorentz scalar product,
defines an 1-form on the total space SX.

Remark. For each x ∈ X there is an oriented real line bundle LR
x which the

values of ϑ on Sx pertain to;4 namely, LR
x ⊂ OSx(1, 1). In fact, these bundles

are well-defined globally over SX; refer to [2] for details of the construction.

Remark. The 1-form ϑ is smooth and never vanishes. But ϑ nullifies all the
FX (because every Lorentzian null direction is orthogonal to itself) and all
vertical (going along the fibers) directions in SX because dx = 0. In other
words, T (SX) has a continuous distribution HSX := kerϑ of homogeneous
co-oriented hyperplanes, a distribution containing TSx for all x ∈ X.

4Here is not important which bundle namely it is. One can also use a tautological
contact form similar to the form from the subsection 1.5. Alternatively, one may choose
for each point w ∈ SX its representative v ∈ C+

x(w) \ {0} in a smooth fashion, which leads

to a nominally real-valued form, but meaningful only up to multiplication by a positive
function.
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Remark. For a C2-smooth5 SX for any vertical vector field V on SX (that
is, a section of ker dx ⊂ TSX) and any light vector field L (that is, a section
of FX ↪→ TSX), their Lie bracket satisfies ϑ[V, L] = 0.

2.2 Extensions for light lines and SX

Consider some light line ` in SX. Each its point specifies a plane tangent
to the respective sky in TSX and, after quotient by the light foliation, in
T`N (N is not necessarily a manifold, but has tangent spaces defined locally).
All skies are Legendrian, hence all these homogeneous planes actually lie
in Tc`N,6 giving an immersion—and in sane cases also an embedding—of
the light line ` into G̃r2(Tc), assuming four-dimensional orientation of the
space-time7 at `. Each sky has a complex structure, hence we can lift it
against the complex-forgetful map to P(C⊗ Tc`N) \P Tc`N, denoting the
image with ˆ̀.8

In some cases—such as when the space-time X is real analytic, but not
necessarily because ˆ̀ is not necessarily differentiable with respect to the
smooth structure of X—it’s possible to find a holomorphic curve Û ⊃ ˆ̀

in P(C⊗ Tc`N).

Definition 12. If, for some light line `, a holomorphic curve Û ⊂ P(C ⊗
Tc`N) contains the lifting ˆ̀of the light line constructed above, and ˆ̀is closed
in Û , then Û is a [non-degenerate] lateral extension for `.

Remark. Points of ˆ̀ are projectivisations of T 1,0 vectors tangent to skies
on `. Substituting the external derivative of a contact form in N, restricted
to Tc`N, for ω from the subsection 1.3 gives a complex contact bundle over
the Grassmanian; we also can check that ω(z, dz) = 0 for such z ∈ C⊗Tc`N
that originate from T 1,0 spaces of skies along `. Hence Û is a holomorphic
Legendrian curve by its property to contain ˆ̀.

5Our standard smoothness condition can guarantee only C1 for SX. With C2 an even
stronger relation holds: [HSX,FX] ⊂ HSX.

6The contact subspace Tc` N ⊂ T`N is the pushforward of H` SX by the projection
from the bundle of skies onto N.

7Or orientation of the space alone – both things are equivalent in this time-oriented
context.

8Henceforth we shall write “ˆ̀⊂ P(C ⊗ Tc` N)” and so on by some abuse of notation,
although it must be understood that only immersion is certain; there is no warranty
against self-intersections or multiple covering.
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Example. Trivially, for a conformally flat (such as Minkowski space) case—or,
more generally, where ` has no shear—the respective two-dimensional com-
plex structure9 forms a lateral extension.

Definition 13. The tautological bundle E Û for a lateral extension Û is a
holomorphic line bundle restricted from the tautological line bundle of P(C⊗
Tc`N) to Û .

By Re : C ⊗ Tc`N → Tc`N, the vector-space version of the [projective]
complex-forgetful plane map r, the fibers of E Û 10 are canonically isomorphic
to homogeneous real 2-subspaces of Tc`N.

Remark. Over the real part ˆ̀ of Û all fibers of this bundle are complex (T 1,0)
tangent lines to skies.

E Û as a whole is naturally mapped to Tc`N.

We can also admit “degenerate” lateral extensions—those where Û is not
even immersed to C⊗Tc`N, but only holomorphically mapped—but better
to pass straightly to extension of a whole bundle of skies.

Definition 14. A massless extension of the bundle of skies SX is a smooth11

manifold S, dimR S = 7, endowed with a smooth co-oriented distribution HS
of tangent hyperplanes, such CR structure T 1,0

I S ⊂ C⊗HS having one com-
plex dimension that T cS := ReT 1,0

I S is integrable12 and [HS, T cS] ⊂ HS,
a smooth complex line bundle E S embedded into C⊗ (HS/T cS) holomor-
phically along the leafs of T cS,13 and a continuous mapping ι : SX ↪→ S
satisfying the following conditions:

• the image of ι is closed in S;

• ι is injective;

9See [5] subsection 2.1 or [2] Minkowski space for details of the complex embedding
for N—the affine part of a projective manifold PN—in the Minkowski case.

10More correctly, the isomorphism takes place only restricted to Û \P(Tc` N). All points
of P(Tc` N) can be removed from Û , preserving its property to be a lateral extension.

11Can have a C∞ structure but, in practice, no derivative will be used above the order 2
which is needed to define the Lie bracket of vector fields.

12That is, the CR structure results in foliation by complex curves. Not every CR
structure, of course, admits complex curves.

13TS/T cS is trivial along the complex leafs due to integrability of T cS, and each of
these leafs has constant HS/T cS ⊂ TS/T cS because of [HS, T cS] ⊂ HS.
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• each light line in SX maps by ι to one complex curve;14

• each point of S can be connected with the image of ι by a complex
path;

• for any w ∈ SX there is such neighborhood Uw of its image ι(w) ⊂
Uw ⊂ S that ι descends to a C1 diffeomorphism from the quotient of
ι−1(Uw) by the light foliation onto the quotient of Uw by the foliation
of complex curves;

• the partial derivative of ι along skies Sx for any x ∈ X exists, is
continuous on SX, and the equivalence class of the complex partial
derivative of ι along skies under quotient by C ⊗ T cS belongs to E S
everywhere.

Definition 15. For a massless extension S of SX, denote by NS the quotient
space of S by its complex leafs.

Remark. In “civilized” cases NS and N coincide. Generally NS , although has
a local smooth structure, may be non-Hausdorff as well as N, but in any case
a continuous mapping from N onto NS is defined according to their respec-
tive definitions and the light-lines mapping property (Definition 14). If NS
happened to be a five-dimensional C1 manifold15 globally, then it possesses
a co-oriented contact structure descended from HS. In this case—which will
be henceforth the main interesting for us—we can do differential geometry
relevant to the contact structure on NS and abandon N altogether.

Remark. A massless extension could be thought of as of a fiber bundle
over NS having one-dimensional complex fibers—complex light lines—but
we don’t require different “fibers” to be homeomorphic (let alone biholomor-
phic), hence better to reuse the concept of a Cauchy–Riemann structure.

Remark. If NS is a manifold, then T cS = ker dq where q denotes the quotient
mapping to NS . Hence HS/T cS is the same as q∗ TcNS , and E S specifies
a mapping PE : S → P(C ⊗ TcNS). On the other hand, E S is a weaker
structure than QC-contact could be. Indeed, were certain T 1,0

II S ⊃ T 1,0
I S,

then we could define E S := T 1,0
II S mod C ⊗ T cS that is E S + C ⊗ T cS =

T 1,0
II S ⊕T

0,1
I S (remind that C⊗T c = T 1,0⊕T 0,1). But, having only E+C⊗

14That is, an integral submanifold of T cS. For differentiable case it means FX ⊂ ι∗T cS.
15We assume such C1 structure that the projection from SX to NS is C1, not just an

arbitrary C1 smoothness structure.
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T c as a three-dimensional complex subspace in C ⊗ H, there is no unique
subtraction operation to take T 0,1

I away and obtain a two-dimensional T 1,0
II .

Remark. A massless extension obviously exists for a real analytic X (use a
tube-like thing resulting from the union of all complexified null geodesics
to construct), producing analytic S and ι in their turn. The conditions on
a massless extension in general can be thought of as a “weak analyticity”
condition on X.

Remark. Note that—although each sky must be embedded to S smoothly
(C1)—the “embedding” ι : SX ↪→ S is only for topological manifolds and
isn’t necessarily a C1 mapping! In some points of the bundle of skies it may
be not differentiable along the geodesic flow (light lines).

2.3 The main theorem

Now we are prepared to describe the structure of NS with (quasi) complex
Legendrian bundles. NS (like N) is five-dimensional, hence a QC-Legendrian
bundle for dimX = 7 can fit into this base.

Since our aim is to obtain smooth structures continued to the complexi-
fied light dimension, we must restrain (with some analyticity conditions) the
original data coming from SX. The subbundle

EI :=
⊔
x∈X

ι∗ (T 1,0Sx) ⊂ C⊗HS|ι(SX)

is canonically isomorphic to E S|ι(SX) because fibers of E S coincide with tan-
gent planes to skies on the real bundle of skies. We should impose conditions
on dependence of EI—named the connexion of skies—on points of ι(SX).

Theorem 2. Let X be an oriented space-time and S a massless extension of
its bundle of skies SX. Also suppose that the quotient NS of S by its com-
plex leafs foliation is a smooth manifold and has such real analytic structure
that the connexion of skies EI (a complex line subbundle in C ⊗ HS|ι(SX))
is holomorphic along the complex leafs of S.16 Then there exists such X,
ι : SX ↪→ X ⊂ S—a smaller17 continuation of the bundle of skies—endowed

16S possesses a natural mapping PE to P(C⊗TcNS). Although we don’t require it to
be analytic—that is, analyticity for the massless extension—the total space P(C⊗TcNS)
is analytic, and because of embedding of EI into the tangent bundle of the latter manifold,
we can judge about partial analyticity of EI.

17Possibly X = S as smooth manifolds.
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with such smooth T 1,0
II X ⊂ C ⊗ HX of the rank 2 (where HX := HS|X)

that T 1,0
II X subsumes the CR structure restricted from S,18 and embeddings

Sx ↪→ X, x ∈ X produce almost (complex Legendrian) curves, preserving
the complex structure on skies. Moreover, the quotient map q : X→ NS (re-
stricted from S to X) forms an almost (complex Legendrian) bundle which is
QC-Legendrian outside Sdeg, where Sdeg is the closed set where the derivative
of E S along the complex leafs is zero,19 and ReT 1,0

III (X \ Sdeg)—see subsec-
tion 1.5—is the same tangent subbundle as HS|X\Sdeg .

Remark. Analiticity for NS is, in fact, “spatial-only analiticity”, not an un-
reasonable thing for “real-world physics” because the standard construction
for the space of null geodesics is ST ′M where M is either a Cauchy surface
(see e.g. [4]) or the cosmological singularity (see e.g. [2]). Conditions in
terms of X are yet short of real analiticity and admit cases of non-smooth
embedding of it into a complex space-time.

Proof. We have to “upgrade” one-complex-dimensional CR structure of the
massless extension to a two-complex-dimensional tangent subbundle struc-
ture suitable for a QC-complex manifold. For it, we make continuation of the
connexion of skies which came from SX (and is defined over its image), with
its derivatives, to some X ⊂ S, a neighborhood of the image of SX. The con-
tinued connexion of skies—that is, a line subbundle in C⊗HS—gives us the
second complex dimension. T 1,0

II X must be the direct sum of T 1,0
I X = T 1,0

I S|X
(the complex light direction) with the connexion of skies.

The fact that the Lie bracket, in fact, adds one dimension to T 1,0
II ev-

erywhere on X except X ∩ Sdeg—and that ReT 1,0
III (X \ Sdeg) = HS|X\Sdeg

namely—follows from computation of the Lie bracket between sections of EI

and T 1,0
I X.

The complex structure of skies is preserved by the construction of T 1,0
II X

from EI. Also by construction, EI and T 1,0
I represent in each point of ι(SX)

two real tangent planes intersecting by {0}, hence T 1,0
II X ∩ C⊗ T (ι(Sx)) =

EI|ι(Sx) – that is, ι(Sx) is Legendrian for any x ∈ X.

18T 1,0
II X ⊃ T 1,0

I X := T 1,0
I S|X or, in integral terms, complex leafs of S restrict to Legen-

drian complex paths in X.
19In the important case when the metric tensor g is C2-smooth everywhere and each

leaf of S is a non-degenerate extension—a curve immersed in P(C ⊗ Tc` NS)—there is
Sdeg ∩ ι(SX) = ∅, hence, in this case, if such massless extension exists at all, then it is
always possible without these “degenerate” points.
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At the end, fibers Xw := q−1(w) are Legendrian in X due to the same
{0}-intersection observation.

2.4 Concluding remarks

Beyond the first Lie bracket. We arguably may use the (almost) complex

geometric metaphor for dimensions from ReT 1,0
II X in the context of The-

orem 2. As for (generally) three-dimensional T 1,0
III X = [T 1,0

II X, T 1,0
II X], Lie

brackets of its sections with complex light vector fields (sections of T 1,0
I ) re-

sult in vector fields outside T 1,0
III X wherever X is not conformally flat. This

effect is due to shear20 which—for every x ∈ X where the Weil curvature is
non-zero—is also non-zero on all Sx except for four points at most. Hence,
no three-complex-dimensional CR structure is possible for extensions of the
bundle of skies.

Extra complex dimensions. But we also see an immersion PE : X →
P(C⊗TcNS), which should be embedding in reasonable cases. It can be used
in the context of gravitation (not only conformally invariant Weil curvature,
but things dependent of the metric tensor g inside a conformal class as well)
and these findings will be published separately.

* * *
This version of the paper is likely to be updated once more in early 2019.21

Some proofs need improvement and some examples are omitted.
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20See [5] section 3 for discussion on geometric effects of shear with respect to the bundle
of skies. Note that the authors avoid the word “sky”.

21Look for real-time updates at http://course.irccity.ru/celestial/HSoNG.pdf
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